
Provenance framework for mHealth
Aarathi Prasad1, Ronald Peterson1, Shrirang Mare1, Jacob Sorber2, Kolin Paul3, and David Kotz1

1Department of Computer Science, Dartmouth College
2School of Computing, Clemson University

3Indian Institute of Technology, Delhi

Abstract—Mobile health technologies allow patients to collect
their health information outside the hospital and share this
information with others. But how can data consumers know
whether to trust the sensor-collected and human-entered data
they receive? Data consumers might be able to verify the accuracy
and authenticity of the data if they have information about
its origin and about changes made to it, i.e., the provenance
of the data. We propose a provenance framework for mHealth
devices, to collect and share provenance metadata and help the
data consumer verify whether certain provenance properties
are satisfied by the data they receive. This paper describes
the programming model for this framework, which describes
the rules to be implemented for providing provenance-collecting
capabilities to an mHealth application.

I. PROVENANCE IN MHEALTH

Consider Jane, who is using one or more mobile health
(mHealth) devices, continuously or periodically collecting her
health-related information into her mobile phone. The phone
periodically uploads this information, along with other health-
related information that Jane manually inputs to her phone,
to her electronic health record (EHR). Jane can then share
her health information with her health providers, family and
friends, peers, employer, insurer, and researchers. But how
can these data consumers know whether to trust the sensor-
collected and human-entered data they receive? What confi-
dence do they have that it is accurate and authentic? Suppose
Jane falls sick, and her husband Jack (her caregiver) collects
her health information on her behalf. Jack has no experience
using the devices. Can the system help him understand when
he is not collecting accurate information?

Since personal and home-use devices are not maintained
regularly, like hospital devices, users like Jane and Jack
might not realize when the devices are malfunctioning or
uncalibrated. If other people in Jane’s household use similar
devices, they might accidentally confuse their own device
for Jane’s. mHealth devices, being mobile, can be stolen or
misplaced – and then used by another person. Jane, or her
caregivers, might deliberately fake or hide data collected using
mHealth devices, when there is an incentive to do so. In all
these scenarios, the data collected and shared by the devices
might be inaccurate, or about the wrong person. If so, its use
could prove damaging or even fatal, especially if the data is
used by health providers for diagnosis or treatment.

Data consumers might be able to verify the accuracy and
authenticity of the data if they have information about its

origin and about changes made to it, i.e., the provenance
of the data. Previous research has looked at provenance of
electronic health records and our work complements this
research [1], [2]. In the case of health data that is collected
using mobile sensors, it is necessary to collect information
about the data’s origin, so that consumers can determine the
accuracy and authenticity of the data; our framework provides
these capabilities, unlike the provenance middleware that may
exist on the EHR server. Provenance has been identified as
one of the challenges for data collected using mobile health
devices [3].

In one previous work, Medially, middleware for remote
health monitoring, collects contextual provenance and triggers
collection of high-fidelity data when certain contextual con-
straints are satisfied [4]. The middleware allows reconstruction
of the contextual trigger states to help the data consumer
understand why the data was collected. Our goals are different.
Our framework will share provenance metadata with the data
consumer, i.e., any context information that can attest to
the authenticity and accuracy of the data and can help in
interpreting the data. We also share a confidence value that
the system assigns to the data, with respect to the metadata,
so that the data consumer can infer whether the provenance
properties she desires, like data accuracy, are satisfied.

To realize this vision, we propose a provenance framework
for mHealth. The primary function of the framework is to
collect and share provenance metadata and help the data
consumer verify whether certain provenance properties are
satisfied by the data they receive. An mHealth app developer
uses the provenance framework to add provenance-tracking
capabilities to her mHealth application. The developer works
with a domain expert, i.e., someone who is familiar with
the medical requirements of the application, to define the
provenance properties desired by each class of data consumer
(clinical staff may desire different properties than, say, family
members), and to identify the provenance metadata required
to verify these properties. Using tools in our framework, the
developer and expert collaboratively prepare a provenance
model for each class of data consumer in their application.

In our approach, the provenance model defines rules that de-
termine how and when contextual metadata should be collected
and when the device user or data consumer should be alerted to
possible problems with the data. One straightforward approach
would collect everything about the context and store it with
the data, later analyzing this metadata to verify whether the978-1-4673-5494-3/13/$31.00 c© 2013 IEEE

provenance properties are satisfied. Our rule-based approach
ensures that only necessary metadata is collected, saving
energy and storage. It is also possible for rules to trigger
immediate responses, based on the the data and metadata
collected.

When the application is installed on the phone, these rules
are added to a rules file on the user’s mobile phone. A
provenance service running on the user’s mobile phone will
interpret the rules to collect metadata, process it, bind it with
the data, and send it to the electronic health record, or to
alert the caregiver or others. The data consumer can identify
problems in the sensor readings based on the confidence the
system assigns to the sensor data.

Security Assumptions:
1) The phone and sensors are not compromised, i.e., the

adversary can not compromise the hardware or software
in the phone or in the sensors.

2) There is a secure connection between the phone and the
sensor and between the phone and the server. (The phone
and the sensors are capable of performing crypto oper-
ations such as encryption and hashing, have a common
wireless radio to communicate, and have shared secret
key(s) that are not available to the adversary. With these
assumptions, the phone and the sensors can establish a
secure communication channel.)

The provenance framework has three components – a mod-
eling tool that is used by the developer and the domain expert
to build the provenance model and generate the rules, the
provenance middleware that implements a rule engine that runs
on the user’s mobile phone, and the graphical user interface
for the consumer on the server side. This paper describes the
kinds of rules to be implemented for providing provenance-
collecting capabilities to an mHealth application. First we
describe some motivating scenarios, then introduce the rules
grammar, and then demonstrate how the rules would be applied
to the scenarios.

II. SCENARIOS

Consider a specific scenario. Devi, a health worker, visits
pregnant women in a village in India every week with a
sensor kit that has mHealth devices like a blood-pressure cuff,
a portable anemia sensor, heart-rate monitor, fetal monitor,
spirometer, and weight scale, along with an Android phone and
a wireless printer. The pregnant women are enrolled as patients
in the village health clinic and the data collected by Devi
is uploaded to their patient records in the clinic’s electronic
health record system. A printout of the collected data (and
health instructions) is given to the patient. The system alerts
Dr. Ravi in the event of an abnormal reading. If no alerts
occur, Dr. Ravi checks the patient records once a week.

Case 1: Spirometer reading. Devi takes patient Ritu’s lung
capacity reading using the spirometer. When the reading is
taken, the atmospheric dust and pollen count in Ritu’s town is
collected by Devi’s phone from the weather website. The dust
and pollen count readings are sent to Ritu’s electronic health

record along with the other vital-sign readings collected by
Devi using the mHealth app on her phone. Dr. Ravi is alerted
by the electronic record system that Ritu, one of his patients,
has had a gradual decrease in her lung capacity over a period
of four weeks. His first suspicion is that Devi’s spirometer
was not working correctly, but then he notices that there was
a high concentration of dust and pollen around Devi’s house.
Since the system also attests to the fact that all the devices
Devi was using were working correctly, the readings from the
website was accurate and the spirometer readings were indeed
from Ritu herself, he trusts the readings and investigates the
possibility that Ritu is suffering from problems related to dust
and pollen inhalation.

Case 2: Hemoglobin reading. One day, Devi is unwell,
but still decides to go on her visits. She visits Ritu. The
mHealth app records Ritu’s hemoglobin count after she slides
her finger into an anemia sensor [5]. Devi realizes later that
she is unwell. She feels sick, but she had to visit Priya’s
house as well. So instead of visiting Priya, Devi takes her
own hemoglobin reading using the anemia sensor and saves
it as Priya’s. The system alerts Aman, the clinic manager that
Devi took a reading for Priya but her fingerprint did not match
Priya’s. Devi is warned about her carelessness, and the data is
marked invalid.

III. RULES FOR PROVENANCE

The developer, with the help of the domain expert, con-
structs a set of rules to collect, process, store, and send
provenance metadata to the patient’s health record. The rules
file and the library containing developer-defined functions
are also installed on the mobile phone, when the mHealth
application is installed.

The grammar described in Figure 1 describes the rules
that can be interpreted by the provenance service. We have
used a modified version of the Extended Backus-Naur form
to describe the rule structure. The syntax of the form is as
follows:

• x ::= y is a definition, where x is a non-terminal.
• a ::= x|y means a is defined either as x or y.
• x => y means y is executed when x condition is true.
• {x} means that x occurs zero or more times.
• [x] means that x is optional.
• (x|y) means either x or y is chosen from the group

containing x and y.
• x denotes that x is a terminal. All underlined words are

keywords in the grammar.
• A word is a sequence of letters starting with a lower-case

letter and a Word is a sequence of letters starting with an
upper-case letter. number, string and boolean are
constant values as in most languages. time is represented
as sequence of two characters separated by ’/’ (that
denotes the date as mm/dd/yy) followed by a whitespace,
and then by a sequence of integers separated by ‘:’ (that
denotes the time as hours:minutes:seconds). duration
represents a time period, which is denoted by an integer,
followed by whitespace and then followed by one of the

stmt := (rule | decl);
rule := condition => {action,}action

condition := event | condfunction
| not(condition)

| (condition)logop(condition)

| (extfunction)relop(value)

action := Word([args])

function := condfunction | extfunction
| action

condfunction := isWord([args])

extfunction := getWord([args])

event := wordEvent[(args)]

logop := and | or
relop := < | > | <= | >= | ==

value := NIL | number | string | time
| boolean | duration | location

data := reading | window
args := {arg,}arg | pairs
arg := data | word | value

pairs := {pair,}pair
pair := <word,arg>

source := wordSource

role := wordRole

decl := Source {source,}source
| Role {role,}role
| Event {event,}event
| Function {function,}function
| Library {word,}word
| Error {word,}word

Figure 1: Rule-based grammar for mHealth provenance frame-
work

following words: secs, mins, hours, days, weeks, months
or years. location is a sequence of three integers
separated by a ‘:’, which represents a value collected by
a GPS sensor (denoted by degrees:minutes:seconds).

• source, role, reading and window are objects that
represent a type of sensor data and metadata, a class
of consumers, a data reading, and a window of data
respectively.

• Any line in the rules file may have a comment, from a
‘%’ symbol to the end of the line.

• Newlines and other white space are otherwise ignored.
• decl statement declares a word to be a specific type,

namely a source, role, event, function, library or an error.
• actions cannot alter data, sources or roles.
Each rule specifies an action (or sequence of actions) that is

executed if a condition occurs. A rule can be executed under
different circumstances. First, a rule can be executed when an

event is posted by one of the applications on the phone. An
event service (part of the framework) continuously listens for
application events on the phone. When one of these events
occurs, the event service notifies the provenance service and
the corresponding rule(s) are executed. Note events can have
parameters that carry information from the posting application
to the actions.

A rule can also be executed when a conditional function
returns true or when the value returned by an extractor function
meets a given condition. These functions are defined by the
developer. A source has the following attributes: sensor handle,
data (reading or window) and confidence. A role has
attributes like name, contact information, biometric informa-
tion and confidence. reading and window represent data
objects, with attributes like data, confidence and the time and
location at the start and end of collection of the particular
data reading or window. In the case of reading, the data
attributes are word-value pairs. A window is a sequence
of readings collected over a window of time; attributes are
word-value pairs. The details of these objects are handled
in functions and are out of the scope of this paper.

Extractor functions are used to extract the object attributes.
The attributes, including the data that is collected from sen-
sors, are of type NIL, number, string, boolean, time
or location or a combination of two or more of these
types (reading or window). Conditional functions can test
whether the extracted information meets certain criteria.

One more type of function is permitted in the rule grammar;
actions are essentially action functions that are called by
the provenance service when a rule is executed. These actions
could for example, request the sensor manager to collect
sensor data. We assume there is a sensor manager service
in the mobile phone, responsible for maintaining a list of
sensors connected to the mobile phone, collecting data from
these sensors when asked, and distributing it to the requested
parties (i.e., an app or the provenance service). Funf [6]
and Open Data Kit [7] are two examples of such a sensor
manager service. As soon as it receives any data from the
sensor manager, the provenance service writes the metadata
to a binary log file on the phone, for later use in auditing.
The developer can also define action functions that notify
people, process health data and provenance metadata (for
example, generate a summary) and send this processed data
and metadata to the patient’s electronic health record.

The rule evaluation works (in effect) as follows:

Forever:
For each rule, in order:
if condition true, execute action(s).

The parameters used to evaluate a condition are the same
parameters that are used while executing the corresponding
action; even if newer data is available, the same data that
was used to evaluate a condition is used while executing the
corresponding action.

IV. PROGRAMMING MODEL FOR PROVENANCE
MIDDLEWARE

Here is a sketch of how our approach will work. We
imagine a collaborative process in which a domain expert (who
understands the medical context) works with the application
developer (a programmer building the mHealth application) to
identify and define the provenance needs for the app.

1) Domain expert will decide what metadata is required by
consumers and when it should be collected.

2) Developer, working with domain expert, defines sources
used by the mHealth application for both health data and
provenance/context data. Declare the different roles and
include all the classes of consumers.

3) For each type of metadata, the developer should define
rules to specify when to collect, re-collect and send the
metadata to the patient’s health record, when to notify
consumers, and handle error cases (like when the sensor
or sensor data is not available or manual data is not
entered).

4) Some metadata might be a combination of data obtained
from two different sources. In this case, the developer
could write code for a “virtual sensor” that can be
installed in the sensor manager.

5) For each metadata, call the action Reading(source)
or Window(source) to ask the sensor manager to
contact the relevant sensor and collects data from it as a
single reading or a window of readings. The developer
should specify a rule to handle the case when the sensor
manager cannot find such a sensor.

6) The developer can define extractor functions like
getSensor(source) to get information or
getSummary(getData(source)) to summarize
data.

7) For each source, define a rule that is executed when the
data is available to be used by the provenance service.
Also define rules in the case of timeouts or other failures
to retrieve sensor data.

8) If no rules are specified for timeout and error
events, the provenance service calls an inbuilt function
Log(cause, errorcode) that logs the timeout or
error and its cause to the error log file.

9) Define a rule that uses the Send(..) action for each
group of health data that is collected by the application.
This action sends the provenance metadata needed to
verify the provenance properties of the health data,
to the patient’s electronic health record. The Send
function takes a list of attribute-value pairs and the EHR
identifier.

The functions are written in Java and the files are compiled
into a library that is installed on the phone along with the
mHealth application and rules file. The provenance service
reads the rules file and links with the library, before data
collection begins.

V. DEMONSTRATION OF RULES

Next, we demonstrate how the provenance framework can
be used by describing the rules for the two cases in Section II.

Case 1: Spirometer reading. This case demonstrates how
provenance metadata is collected as a window of continuous
readings from an external sensor, that is not a part of the health
kit. The provenance property for clinicians is the accuracy
of lung capacity, and anything that can help the clinicians
interpret the lung-capacity reading.

The domain expert recommends that obtaining dust and
pollen count in the patient’s town can help clinicians interpret
lung-capacity readings. To verify the accuracy of the lung-
capacity reading, the clinician will need to be convinced that
the spirometer was not faulty (confidence in sensor), was
applied correctly (confidence in health worker) and was used
on the right patient (confidence in patient). Lung capacity, dust
and pollen are declared as sources.

Library mHealthKitLibrary;
Source lungCapacitySource, dustSource;
Role patientRole, healthworkerRole,
clinicianRole, attendantRole;

Event recordSavedEvent;
Error lowConfidenceError, timedOutError;

The default library, provenanceLibrary, includes
events like dataAvailableEvent(source)
and timeOutEvent(source) and functions like
Window(source, time) and getSensor(source).
The functions are overridden if they are defined again in the
custom library mHealthKitLibrary, which is written in Java.

The sensor manager posts an event
dataAvailableEvent(lungCapacitySource)
after it collects the lung capacity reading from the spirometer.
The sensor manager posts the dataAvailableEvent after
each window is collected and ready to be distributed. The
following rule defines when to collect dust and pollen count –
after the provenance service receives the lung capacity reading
from the sensor manager. The function Window(source,
duration) asks sensor manager to collect readings taken
during the last n days/hours/minutes/seconds.

dataAvailableEvent(lungCapacitySource) =>
Window(dustSource, 7 days),
Window(pollenCountSource, 7 days);

The following rules handle error cases. The first rule
considers whether the confidence in the readings is less
than the threshold recommended by the domain expert.
getWindow(source) gets the last window of readings that
was collected from the sensor; this value is not updated while
an action function is using it, even if newer readings are
available. The second rule is executed when the connection to
the dust sensor times out. The timeOutEvent(source)
event is posted by the sensor manager when the connection to
the sensor times out. When the provenance service executes
the Notify function, it contacts the sensor attendant with the

second argument as the message. We assume that the sensors,

(dataAvailableEvent(dustSource))and
((getConfidence(getWindow(dustSource)))<(0.8))

=> Log(getSensor(dustSource),
lowConfidenceError);

Notify(getAttendant(dustSource), “Low
confidence for reading”);

timeOutEvent(dustSource) =>
Log(getSensor(dustSource),
lowConfidenceError);

Notify(getAttendant(dustSource), “Low
confidence for reading”);

along with data, also provide a value that indicates how much
confidence the sensor has in the accuracy of the collected
data. The function getConfidence(object) returns the
confidence for the object. For sensors and sensor data, it is
the value provided by the sensor. Confidence in people is
determined by the value provided by the biometric sensors
and the algorithm verifying the biometrics.

In this case, no additional rules are added to handle
other error cases. All error events invoke the Log(cause,
errorcode) function, which logs the error to the error log
file. Implicitly, there is a rule errorEvent = > Log(cause,

errorcode).
The recordSavedEvent is posted when the health

worker clicks on the Save button on the mHealth kit ap-
plication, uploading data to the patient’s health record. The
provenance service then sends the metadata and the confidence
values to the patient’s electronic health record.

recordSavedEvent = >
Send(patientEHR, <data, lungCapacitySource>,
<metadata, dustSource>,
<sensor,getSensor(dustSource)>,
<confidence,
getConfidence(getSensor(dustSource))>,

<reading,
getSummary(getWindow(dustSource))>,

<confidence,
getConfidence(getWindow(dustSource))>,

<metadata, pollenCountSource>,
<sensor,
getSensor(pollenCountSource)>,

<confidence, getConfidence
(getSensor(pollenCountSource))>,

<reading,
getSummary(getWindow(pollenCountSource))>,

<confidence, getConfidence
(getWindow(pollenCountSource))>,

<confidence, getConfidence
(getReading(lungCapacitySource))>,

<confidence,
getConfidence(patientRole)>,

<confidence,
getConfidence(healthworkerRole)>);

Case 2: Hemoglobin reading. This case demonstrates how
provenance metadata is collected from a virtual sensor (code
installed on the sensor manager that “senses” derived data).
The provenance property for the class of clinicians is the

accuracy of the hemoglobin reading. The provenance property
for the class of clinic managers is the efficiency of the health
worker.

The domain expert recommends that tracking the health
workers and monitoring their activities can help understand
their efficiency. To verify the accuracy of the hemoglobin
reading, the clinician will need to be convinced that the
anemia sensor was not faulty (confidence in sensor), was
applied correctly (confidence in health worker) and was used
on the right patient (confidence in patient). The patient can
be identified using her fingerprint that is also collected using
the anemia sensor. Hemoglobin, fingerprint and healthworker
efficiency are declared as sources. Healthworker efficiency is
collected by a virtual sensor. The virtual sensor reads the
location of the phone from its internal GPS sensor every time
the sensor manager is requested by the mHealth application to
collect some data. It also reads the data from the accelerometer,
and determines whether the health worker was mobile or
stationary. Based on the GPS and accelerometer readings,
the virtual sensor computes the activity of the health worker,
whether she is walking, whether her last GPS reading matches
with the address of the patient she is taking measurements of,
or whether it is a new patient.

Library mHealthKitLibrary;
Source hemoglobinSource, fingerprintSource;
Role patientRole, healthworkerRole,
clinicianRole, clinicManagerRole;

Event recordSavedEvent;
Function isfingerPrintMatch(fingerprintSource,
patientRole);

Error noNewReadingTakenError,
wrongPatientError;

The sensor manager posts an event
dataAvailableEvent(hemoglobinSource) after
it collects the hemoglobin reading from the anemia sensor.
The following rule defines when to re-collect hemoglobin
reading – after the provenance service receives the lung
capacity reading from the sensor manager, but finds it to be
of low confidence. The function NewReading(source)
logs the old reading and calls Reading(source),
which requests the sensor manager to collect reading from
getSensor(source).

(dataAvailableEvent(hemoglobinSource))and
((getConfidence(getReading(hemoglobinSource)))
<(0.8)) = > NewReading(hemoglobinSource);

The following rules apply when the reading is not
received after a certain period of time. If request times
out and no error occurs, it implies that the reading was
not taken. We assume, for now, that the formula for
confidence computation is provided by the domain expert.
The timeOutEvent(source) is fired by the sensor
manager when the connection to the sensor collecting source
times out. When the provenance service executes the Notify
function, it sends an email to the clinic manager. The clinic

manager is notified that no new readings were taken for
hemoglobin. Another definition of the Notify function takes
a third parameter, an argument list, that the clinic manager
will need to understand who was at fault and assess what went
wrong. The clinic manager is also notified if the fingerprint
obtained does not match that of the patient. The function
isFingerPrintMatch(fingerprintSource,
patientRole) returns true, if there is at least an
80% match of getReading(fingerprintSource) and
getFingerPrint(patientRole).

(timeOutEvent(hemoglobinSource)) and (not
(errorEvent)) =>
Log(healthworkerRole, noNewReadingError),
Notify(clinicManagerRole, “No new
readings taken for hemoglobin”,
healthworkerRole);

(dataAvailableEvent(fingerprintSource))
and (not (isFingerPrintMatch
(fingerprintSource, patientRole))) = >
Log(healthworkerRole, wrongPatientError),
Notify(clinicmanagerRole, “Wrong
patient”, healthworkerRole);

The recordSavedEvent is posted when the health worker
clicks the Save button on the mHealthkit application. The
provenance service then sends the metadata and the confidence
values to the patient’s electronic health record.

recordSavedEvent = >
Send(patientEHR, <data,hemoglobinSource>,

<metadata,fingerPrintSource>,
<sensor,
getSensor(fingerPrintSource)>,

<confidence, getConfidence
(getSensor(fingerPrintSource))>,

<reading,getReading(fingerprintSource)>,
<confidence, getConfidence
(getReading(fingerprintSource))>,

<metadata,healthworkerEfficiencySource>,
<reading, getSummary(getWindow(
healthworkerEfficiencySource)>,

<confidence,getConfidence(getWindow(
healthworkerEfficiencySource))>,

<confidence,getConfidence
(getReading(hemoglobinSource))>,

<confidence,getConfidence(patientRole)>,
<confidence, getConfidence
(healthWorkerRole)>);

VI. FUTURE WORK

We will implement the provenance middleware – prove-
nance service, event service and sensor manager – on an
Android platform. The middleware will be available for down-
load and can be installed on an Android platform. We expect
the middleware to complement existing mobile-health data
collection frameworks like Sana [8] and Open Data Kit [7], in
that it provides provenance capabilities to these frameworks.
We have presented the rules grammar, but are yet to provide

a formal proof of completeness of the grammar. We also plan
to explore ways to combine confidences of disparate sources
using existing techniques like Dempster-Shafer theory [9].

Once the middleware is completed, we will build the
modeling framework to help developers and domain experts
construct and validate the provenance model and rules and the
graphical user interface where recipients can view the data and
verify its provenance properties.

VII. SUMMARY

In this paper, we propose a provenance framework for
mHealth, which collects and shares provenance metadata to
help the data consumer verify whether certain provenance
properties are satisfied by the data they receive. We also
describe the rules the developer and domain expert need to
construct to provide provenance-collecting capabilities for an
mHealth application. We present the rules for two scenarios
to demonstrate how the provenance middleware will work,
and explained our plans for implementing the provenance
framework.

ACKNOWLEDGEMENTS

We thank Ashutosh Sabharwal, Sanjiva Prasad, and the
Dartmouth TISH group for their continued feedback.

This research results from a research program at the Institute
for Security, Technology, and Society at Dartmouth College,
supported by NSF under award numbers 0910842 and CNS-
1143548, and by the Department of HHS (SHARP program)
under award number 90TR0003-01.

REFERENCES

[1] T. Kifor, L. Z. Varga, J. V. Salceda, S. Alvarez, S. Willmott, S. Miles,
and L. Moreau, “Provenance in agent-mediated healthcare systems,”
IEEE Intelligent Systems, vol. 21, no. 6, pp. 38–46, Nov. 2006. DOI
10.1109/MIS.2006.119

[2] T. D. Wang, C. Plaisant, A. J. Quinn, R. Stanchak, S. Murphy, and
B. Shneiderman, “Aligning temporal data by sentinel events: discovering
patterns in electronic health records,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 2008, pp.
457–466. DOI 10.1145/1357054.1357129

[3] N. Davies, C. Efstratiou, J. Finney, R. Hooper, G. Kortuem, and
M. Lowton, “Sensing danger: Challenges in supporting health and
safety compliance in the field,” in Proceedings of the Workshop on
Mobile Computing Systems and Applications (HotMobile), Mar. 2007,
pp. 34–38. DOI 10.1109/HotMobile.2007.7

[4] A. R. Chowdhury, B. Falchuk, and A. Misra, “Medially: A provenance-
aware remote health monitoring middleware,” in IEEE International
Conference on Pervasive Computing and Communications (PerCom).
IEEE, Mar. 2010, pp. 125–134. DOI 10.1109/PERCOM.2010.5466985

[5] “Biosense.” Available online: http://www.biosense.in/touchb
[6] N. Aharony, W. Pan, C. Ip, I. Khayal, and A. Pentland, “Social

fMRI: Investigating and shaping social mechanisms in the real
world,” Pervasive and Mobile Computing, vol. 7, no. 6, 2011. DOI
10.1016/j.pmcj.2011.09.004

[7] W. Brunette, R. Sodt, R. Chaudhri, M. Goel, M. Falcone, J. Van Orden,
and G. Borriello, “Open data kit sensors: a sensor integration framework
for Android at the application level,” in Proceedings of the International
Conference on Mobile Systems, Applications, and Services (MobiSys).
ACM, Jun. 2012, pp. 351–364. DOI 10.1145/2307636.2307669

[8] Sana. Available online: http://sana.mit.edu/
[9] G. Shafer, A Mathematical Theory of Evidence. Princeton University

Press, 1976. Available online: http://www.glennshafer.com/books/amte.
html

