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Abstract—The current state of Internet of Things is woefully
insecure, and reaching a secure state requires addressing several
serious gaps. Based on the discussions with practitioners and
researchers, we identify key gaps and research challenges that
must be overcome to chart a path toward a secure IoT.

Index Terms—Cryptography, Internet of Things, Privacy, Se-
curity, Usability

I. Introduction

From light bulbs to refrigerators, children’s toys to cars,
consumer devices are being increasingly connected to home
networks and the Internet. Connectivity offers many benefits to
homeowners. For example, homeowners can remotely control
their home thermostats to save on utility bills or monitor their
homes when they are away. However, it also exposes the home
to various online threats: an adversary could compromise or
take control of home devices, for example, to collect (and sell)
homeowner credentials or to carry out denial of service attacks.

While best practices to secure IoT devices exist, they
are often more aspirational than operational. Many of these
practices require device owners to change their behavior,
e.g., to use a separate Wi-Fi network for guests or certain
devices, and to change passwords regularly. However, expecting
people to change well-documented past behaviors is arguably
unreasonable [1]. It is often easier to change technology than
human behavior. Furthermore, many current devices are poorly
designed, making it impossible for owners to follow and adopt
best practices. Consider the basic practice from the eighties
“change the default password,” which cannot be adopted for
products with unchangeable default passwords or inaccessible
password-change interfaces.

How can we move towards a secure Internet of Things?
This was the central question we posed to practitioners and
researchers gathered at an IoT workshop in late 2017. We
discussed the challenges and created a roadmap for a secure
IoT. Inspired by these discussions and the conversations
that ensued, we highlight in this paper the key challenges
and opportunities along four research paths that broadly
reflect workshop participants’ collective expertise and views:
(1) improving the cryptographic infrastructure, (2) designing
more usable devices to help people leverage device capabilities,
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(3) enabling recovery when devices fail or are compromised,
and (4) writing secure code when developing the devices.

Threat Model. Before proceeding, we consider one question
that spans all four research directions: Who is the adversary?
Potential adversaries for a home owner or a device include
another occupant in the home (insider), a neighbor, a guest, the
developer of an app used on a home device, the device manufac-
turer, or a nation state. Security requirements vary based on the
adversary and the threat that must be addressed. For example, it
is easier to protect a device from a nosy neighbor than against
a targeted attack from a nation state. Industry practitioners need
clarity about the threat model to appropriately protect their
devices. From an industry perspective, it may be appropriate to
design consumer IoT devices by considering the threat model of
an average consumer. However, an attack on home IoT devices
may have implications beyond individual consumers’ homes
and it is important to consider a threat model that is broader
than that of an individual home. For example, consumers may
not care about a nation state targeting them individually, but a
nation-state attacker could use insecure home IoT devices as a
springboard to attack a country’s critical infrastructure. While
it may be futile to protect an individual device/home against a
targeted attack from a motivated nation-state attacker, it may
be feasible to prevent a simultaneous large-scale compromise
of IoT devices. Policymakers and technologists should consider
how to make that possible. There is a need for clear guidelines
to (and from) both device manufacturers and policymakers on
appropriate threat models for IoT devices.

II. Cryptography: Securing the IoT Infrastructure

Cryptography is critical to securing the IoT infrastructure.
Generally, infrastructure takes a very long time to change, so it
is important to get cryptography right while the infrastructure is
still being set up. An important aspect of the IoT infrastructure
is developing devices that would meet the security requirements
now but also in the future. When developing devices, choices
must be made about algorithms and key strengths, and poor
choices have long-lasting effects. In devices developed today,
we are already seeing poor design choices (e.g., using SHA1,
a hash algorithm that was deprecated a decade ago by many
organizations, including NIST). Thus, there is an urgency to
address cryptographic issues in practice.

Entropy. A core cryptographic challenge in IoT is generating
sufficient entropy (i.e., randomness) in encryption keys used
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by low-power devices. Weak keys are widespread in network
devices. One main reason is that these devices have more
limited entropy sources than traditional PCs [2]. Keys on IoT
devices should be generated for the context of devices use; for
certain durable appliances, that context could be the device’s
lifetime (e.g., decades for refrigerators; years for lightbulbs).
Potential solutions to address this problem include seeding
devices with entropy at manufacturing or using the physical
environment around IoT devices as sources of entropy (e.g.,
using physically unclonable functions) [2], [3].

Cryptographic agility. IoT goods like televisions, furnaces,
water heaters, and refrigerators have long lifetimes. As a
result, we should also consider post-quantum cryptography,
that is, cryptographic methods that would be relatively secure
against quantum computers or major advances in factoring;
current cryptographic primitives are based on assumptions
about computational capabilities that are not shared by post-
quantum primitives. The emergence of quantum attacks should
not be able to result in simultaneous mass functional expiration
of thermostats, appliances, or other devices in homes across
the globe.

One challenge for the adoption of post-quantum cryptography
is the lack of universal agreement about which post-quantum
standards are acceptable. Identification of such standards would
go far to address the issue. While NIST has a complete
process, the adoption of lightweight post-quantum cryptography
standards does not seem likely in the near term. (Two years
after the workshop 32 candidate standards have made it to the
second round of this process [4].) Another challenge is that
quantum attacks are generally not part of consumers’ threat
model, and hardware manufacturers may ignore or openly
reject any requirements specific it. However, potential exists
to bridge pre- and post-quantum cryptographic infrastructures
with hash-based signatures and by reusing existing circuits for
classical elliptic curve-based cryptography (based on super-
singular elliptic curve isogenies).

Discussions of post-quantum cryptography are often proxies
for broader discussions on the need for cryptographic agility in
the face of other possible advances—e.g., fundamental mathe-
matical breakthroughs that break cryptographic assumptions,
or significant changes in algorithms—that would require an
immediate, agile response. Uncertainty associated with post-
quantum cryptography should not prevent more immediate
investments in cryptographic agility. But the nature of that
investment remains an open research question.

Minimal cryptography. The question of the required mini-
mum level of cryptography, or, more broadly, the minimum
level of security, is contextual, and thus an open question.
Identifying the cryptographic requirements of a device in
a given context may also require addressing questions on
contextual usability and threat models. Should devices have
a wipe button, or is loss of data worse than loss of privacy?
If so, what should trigger wipe functionality? For example,
should it be a time- or location-based (e.g., wipe if the

device is unused for an extended period or changes location)?
Should wipes occur with credentials left intact on the device?
Strong encryption versus short-lived keys is an issue that
combines usability and context, as does automatic re-keying, re-
enrollment, and re-certification. The wide range of processing
power, lifetimes, and changing context of IoT devices further
highlights the importance of cryptographic agility.

Securing low-power and batteryless devices. It is challeng-
ing to add cryptographic primitives in low-power devices, and
even more so in batteryless ones that harvest energy. These
devices may have intermittent and unreliable power supplies.
This constraint raises the tension between adding cryptography
in software vs. hardware. Cryptography in software offers
the ability to change primitives through software updates, but
it can be slow and consume more energy. Cryptography in
hardware, more efficient and fast, is difficult to update. It is
likely that there will be a tiered category of devices that have
different cryptographic capabilities and offer different levels of
security and trustworthiness. An IoT network should be able to
recognize such devices and treat them accordingly, for example,
by limiting network access for less trustworthy devices.

The information gap between cryptographers and device
vendors. A significant gap exists between advances in cryp-
tography and implementation practices in the industry. For
example, there are several different cryptographic primitives,
and the optimal choice varies on factors such as device
constraints, the context of device use, and the device’s expected
longevity. However, device manufacturers and developers may
be unaware of which primitive works best in what situation. To
inform them of these matters, a taxonomy that defines specific
security requirements as well as the cost and the benefits of
different choices would be helpful. The taxonomy could be
used to classify cryptographic primitives (including physical
components) according to their applicability to application
domains and hardware requirements (e.g., the number of
gates needed to implement them in hardware). It would help
developers decide, for example, that for their device and
application, the optimal choice would be the second most
common primitive (e.g., SHA2), not the first (e.g., AES).

III. Usability: Creating Usable IoT Devices

Humans cannot be kept entirely out of the loop [5]. Im-
proving usability by focusing only on improving ease-of-use
while ignoring security or privacy is a narrow view that leads
to security and privacy failures. Instead, IoT device designers
should take a holistic view of usability where the focus is
on improving ease-of-use while respecting users’ privacy and
security needs. The concept of usability should be grounded
in the principle of least surprise, which combines usability,
functionality, and risk.

A long-held industry view is that users need to be “trained”
to follow good security practices (e.g., password policies). This
view is shifting to what the usable security community has
known for decades: security should be designed to align with
users’ expectations and should require minimal (ideally, no)



change in user behavior [6], [7]. If end users need to think
about security, then arguably we security professionals have
already failed. This view extends to developers, as well: if
developers need to understand cryptography in the IoT, then
the battle for security can be considered similarly lost.

Mental models of IoT. An important research area, and
an important first step in developing usable products, is
understanding people’s mental models of IoT [8], viz., how
people currently use technology and what their expectations
are in terms of utility, privacy, and security. Doing so lets us
design solutions that conform to the least surprise principle,
either by designing solutions that align with users’ expectations
or by informing them when solutions do not so align.

Key questions to explore when studying people’s mental
models of IoT include: What do people know about device
capabilities (e.g., data collection)? How do they envision smart
home automation? How do they think devices would behave
in the event of an Internet or power outage? What are their
access control needs and expectations? What inferences do
they believe can be drawn from different devices (using data
from either one device or a set of devices)? How do people
perceive the security and privacy risks of using IoT devices?

Meaningful user controls. Challenges concerning data control
are not unique to IoT devices. They exist for personal devices,
apps, and services, but the need for visibility and control is
high in the IoT context because these devices enable passive
and continuous data collection.

Different stakeholders have different needs based on individ-
ual preferences and/or contextual settings. Two people using
the same IoT system are likely to have different experiences
of agency and different expectations in terms of usability,
security, and privacy. For example, one person may value
retaining data over privacy, while another may prefer data loss
to risk of data exposure. Moreover, IoT devices are often used
in shared spaces, which poses an additional challenge: one
person’s decision to install a device in a shared space could
impinge on the security or privacy of others who share that
space. Thus, it is necessary to design meaningful controls
in IoT devices so that people can tailor devices to their
expectations, which may change depending on their social
context. Controls could be designed for data collection and
use, device maintenance (updates), and/or device access.

The first aspect of data control is data ownership. Who owns
the data collected by an IoT device—the device owner, the
device user (if different), or the device manufacturer? Some
companies consider device owners to be data owners; some
companies claim data ownership; and some do not specify.
Data ownership should be clearly communicated at the time of
purchase. Furthermore, data owners should have the ability to
observe (ideally, choose) where the data is stored and how it
is used, and they should be able to delete their data, because
ownership is pointless if data owners lack such control.

Another aspect of control concerns software updates.
Whether device owners should have control of and responsibil-
ity for device updates remains an open question. Automatic

updates increase the chances that devices will be updated in a
timely way. But mandatory updates—i.e., where a device stops
working until it is updated—may pose safety risks (e.g., if a
smart smoke sensor stops working, a door is unlockable) and
may even be considered unethical. One possible resolution to
this dilemma is for device manufacturers to release separate
updates: updates that change functionality (which would require
user intervention or consent) and updates that contain only
security patches (which can be automatic). Fundamentally,
no one should be forced to choose between a secure but
unacceptable state (by doing a security update that also contains
new undesirable functionality) and a vulnerable but working
state (by not implementing that update).

Lastly, access control for IoT devices is an important research
area, posing a myriad of open questions. At the core of these
questions is the need to determine appropriate access control
models for IoT devices. This is further conflated by the fact
that many IoT devices lack an interface for authentication
and authorization or can be used by multiple people at the
same time (e.g., voice assistants, smart speakers). From the
usability perspective, the challenge is to design IoT access
control models that would just work.

Meaningful stakeholder communication. In addition to
meaningful controls, there must be meaningful communication
about the controls, about risks associated with devices, and
ways to mitigate these risks. Ideally, there should be a culture
of ongoing communication and feedback—between device
users and manufacturers—that informs but does not expose
or overwhelm users. Social engineering and human cognitive
models illustrate how a failure to design for usability and risk
communication is an attack vector.

One of the main uses for IoT devices is home automation: a
consumer can string together multiple IoT devices to create an
automation that offers convenience. For example, lights in the
living room turn on when someone enters the room (walking
triggers a motion sensor in the room, which then notifies
the lights to activate); or a smart doorlock unlocks when an
individual in the living room issues a voice command. But such
multi-device automation can lead to unintended consequences
and pose new threats. For instance, in the preceding example,
if the voice assistant was located near an entrance door, an
adversary just outside the door could issue the unlock command,
which is clearly a security flaw. The flaw, however, is neither
with the voice assistant system, which makes no security claims,
nor with the door lock. The flaw comes from using these
devices in this combination and in this context. Thus, risk
communication about a device should address potential security
implications of using the device in combinations with other
devices.

Devices may break, malfunction, or be compromised, and
device owners should be able to identify these incidents and
take appropriate action. A smart hub in a home or an ISP may
be able to detect compromised devices in a home network, but
communicating this status to the end user is not straightforward.
Consider the problem of locating a compromised device in a



home. Today, many consumers can easily locate an IoT device
in their home because they have only a handful of such devices.
However, as the cost and size of devices decreases in the future,
people will likely have many devices in their homes, and
locating a malfunctioning one may be more difficult. Effective
notifications that help smart home users locate malfunctioning
devices and guide them to mitigate any risk is a critical research
domain.

Another challenge is the allocation of risk and meaningfully
communicating risk to consumers. When device owners connect
their homes to the Internet, they put themselves at risk, just
as they do when driving an automobile or engaging with
other technologies. This risk can be reduced by avoiding
technology, but doing so may result in fewer benefits from the
technology (e.g., home security, health monitoring), and, for
an individual, lost benefits may exceed reduced risks. Thus,
effective risk-benefit communication is important and remains
a challenge. To effectively communicate risk, one possible
approach is to use a risk rating system similar to product
review ratings, since consumers are already familiar with such
systems. But given the different domains and contexts in which
IoT devices can be used (e.g., security, health, residential,
enterprise), it may be impossible to have meaningful risk
ratings for devices across all domains and contexts. An alternate
approach could be to provide both ratings and appropriate
metaphors [9] that show the pathways to change toward a
culture of security and safety.

IV. Recovery: Helping Devices Fail/Recover Gracefully

Devices will break, malfunction, and be compromised.
Therefore, it is important to have recovery mechanisms that
can: (1) ideally, fix the damaged device, (2) limit the damage
from affecting other devices on the network, and/or (3) prevent
risk to life and property.

Known safe state. The first step to recovery is resetting the
affected device to a known safe state, which could be its initial
manufacturing state or the last known operational safe state. If
a safe state is stored in secure (e.g., tamper-proof) hardware,
there can be a high level of trust that the state has not been
compromised and that it is indeed a known safe state from
which full recovery is possible. Yet, most devices today do not
ship with secure hardware to store a safe state. The challenge
is defining the requirements (e.g., minimal trusted base) and
mechanisms to reliably and securely save and load safe states
in devices.

Automatic patching. Resetting a device to a known safe state
will not result in recovery if that state has a vulnerability.
Thus, after resetting a device, patching the vulnerability is
critical. The history of software updates suggests that security
updates should be automatic to the extent possible. As discussed
previously, software updating poses issues of consent and
the role of the device owner. Manufacturers may decide not
to have automatic patching as an option, but that should
not be the default without contextual justification. Not every
vulnerability, however, poses a significant risk and requires

patching. For example, a user may decide that certain devices
are not critical or trustworthy (Section III), or it may be
appropriate to not patch a device even with known vulnerability
because of additional safeguards already in place. But for
devices that are critical (e.g., water heaters) or expensive to
replace (e.g., refrigerators), manufacturers should add automatic
patching or address the risk generated by the decision not
to do so. Addressing that risk requires clear guidelines on
developing reliable and secure automatic patching systems; such
guidelines or standards would be beneficial to both consumers
and manufacturers.

Isolation and transparency. When patching a vulnerable
device is not feasible, risk mitigation is required. Mitigation
may be based on isolation of the affected device. Isolation
via network micro-segmentation is a popular solution to
contain information leakage and limit the impact of vul-
nerabilities. Some home network solutions provide network
boundaries for each device (e.g., solutions based on MUD
https://tools.ietf.org/html/rfc8520). The winners of the 2017
Federal Trade Commission contest for protecting IoT devices
in the home also focused on transparency and isolation (https:
//www.ftc.gov/iot-home-inspector-challenge). Device isolation
could occur during installation or be set dynamically; for
example, if a compromised device is detected, a security hub in
the home could firewall and isolate it [10]. These are promising
approaches, but extending them to a wide range of IoT devices
could raise yet unconsidered problems.

Transparency about devices helps reduce surprise and offers
value across all stages of their lifecycle. At the time of device
purchase, basic facts should be made clear: the expected
lifetime, expectations of support from the device manufacturer,
and device retirement procedures. During a device’s lifetime,
if a vulnerability is discovered, manufacturers should adhere
to a clear policy of notifying device owners and describing
how the vulnerability affects recovery procedures. It should be
clear to owners if and when devices need to be updated and
when updates are complete. And finally, as device retirement
nears, it is critical to communicate clearly when support for
the device ends, how to wipe the device (e.g., of any personal
data), and how to recycle it.

Device expiration date. The need to support older devices
can be cost prohibitive to manufacturers and hinder radical
device improvements. To address this problem, one approach
is the notion of expiration dates for devices and software.
Expiration dates can offer consumers some guarantees and
provide management cycles that allow consumers to plan.
Consider the case of iPhones, where older phones cannot
connect to the App Store. The success of the iPhone illustrates
that forced upgrades are feasible, at least for high-end devices.
The drawback is that expiration dates mandate new purchases.
They also create strong perverse incentives to build devices
that must be replaced. Imagine the cost if all older OnStar-
equipped automobiles had to be replaced instead of patched
when vulnerabilities were discovered (https://nyti.ms/2kkonqE).

https://tools.ietf.org/html/rfc8520
https://www.ftc.gov/iot-home-inspector-challenge
https://www.ftc.gov/iot-home-inspector-challenge
https://nyti.ms/2kkonqE


In addition to perverse incentives are issues of carbon impact.
More importantly, it is unclear whether device-expiry dates
would be effective in the context of IoT devices, i.e., would
users get new secure devices? Again consider iPhones: people
continue to use older iPhones in an insecure mode with
untrustworthy stores. Thus, expiration dates may address the
issue of security to some extent, but they also create strong
perverse incentives and come at potentially vast environmental
costs.

Failsafe. Events such as Internet outages, power outages,
or data/device breaches can and do happen. To ensure safe
and reliable operation during such events, critical devices
should have built-in safeguards. For example, an Internet-
connected thermostat should be prevented from indiscriminately
heating/cooling a home beyond safe temperatures because it
cannot connect to the Internet or is remotely controlled by an
adversary; doors’ locking and unlocking mechanisms should
remain functional despite power outages. Thus, it is important
to design failsafe measures, but they should be designed in a
way that prevents common misuse. For instance, in the event
of a power failure due to fire, it is safety critical that a smart
door should open to let people out; if a thief cuts the power
to the home, it is equally safety critical not to unlock the door.
Detecting such events and taking appropriate recovery actions,
which depend on the device and context should be considered.
Failsafe operations for a home-based IoT environment are
not well understood, but guidance from safety-critical systems
provide a good starting research path [11].

Code integrity and verification. Success and failures in other
domains can inform recoverability in IoT. Issues related to
roots of trust, economic incentives, and challenges of end-
of-life systems existed before IoT, and lessons from those
domains should not be neglected. The two primary creators
of IoT infrastructure include Internet companies, experts in
connectivity and familiar with shipping fast and patching
later, and device (or Things) manufacturers, experts in making
physical devices but new to connectivity. Learning between
the “I”(nternet) and the “T”(hings) requires reaching across
industry boundaries. Consider the issue of manifests: How do
we create industry-readable manifests? How can we verify
them? And how do we create tamper-resistant or tamper-
evident manifests? The automotive industry is an example
of manufacturers with expertise in certification and manifests,
and in this case, the manufacturer is responsible for vehicle
functionality. The automotive industry understands how to
ship with manifests, and the IT industry understands how to
threat model and build roots of trust. Together, these domains
could move IoT devices toward code integrity and verification.
Further work in this area requires social scientists and industrial
economists as much as computer scientists.

V. Code: Supporting Developers inWriting Secure Code

The problem of reducing the amount of insecure code is
not unique to IoT devices. But the implications of insecure
code may be different in IoT devices compared to, for

example, PCs or smartphones, because these devices control
home environments and may pose safety risks to life and
property. Moreover, their scale and heterogeneity increase the
complexity of and constraints on code: There are thousands of
different IoT devices that use different platforms. The desire
to connect devices gave rise to varied ways of integrating
them; for example, via third-party hub devices, smartphone
apps, Zigbee, or web services like IFTTT (https://ifttt.com).
Each integration method offers a potential attack vector. To
further complicate matters, some IoT devices may need built-in
autonomy and/or recoverability from possible failures because
they have to function in unpredictable environments and without
any assistance from people.

There can be no principle of least surprise (Section III) if
developers themselves are surprised by their own code, which
could happen for several reasons. First, most IoT development
occurs in integrated development environments for opaque
platforms. Second, projects share a tremendous amount of
code from which developers may inherit technical debt (e.g.,
obscure code, vulnerabilities). Finally, the lack of incentives to
write secure code and time-to-market pressures force developers
to prioritize functionality features over security/privacy features,
in part because the former is more visible to end users.

Developer incentives. A range of possible approaches can
create incentives to write secure code. One is increased
transparency (Sections III and Section IV), which can create
marketplace incentives to promote security. At another extreme
is strict liability, where developers can be held accountable for
security issues in their code. Perhaps, there is a space between
today’s wild west and the strict regulatory environment that
would be optimal for IoT, but both data and research are needed
to identify it.

Improving the training and expertise of developers is a
rich area for academia-industry collaboration. Companies can
outline their developer requirements and academic institutions
can design industry-specific courses, certificates, or even
degrees. Badges also have great potential to showcase skills
where a university degree or industry certification models are
too heavy. Developers with the skills to easily identify the
minimal library and permissions, use the tools that provide
the correct cryptography, annotate, and provide provenance are
extremely valuable. Badges can be developed and monetized
to improve code quality, and such a system could be incentive-
aligned for all the stakeholders.

Usable security APIs and libraries. The ideal development
environment makes it easier (or, at least, no more difficult)
to write secure code than insecure code. One could achieve
this goal by, for example, embedding input validation into
APIs, provisioning libraries for common points of failure, and
making it trivial to use libraries that allow integration and
testing. As noted in Section II, usable and verified cryptographic
libraries provide value, but only if they are easily discoverable
by developers. Developer forums are filled with insecure and
incorrect advice on security implementations, making it difficult
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for developers to find correct advice and appropriate tools.
Many existing libraries contain insecure code, and developers

inadvertently use them. From a developer perspective, it is
easiest to import an entire library to access even a single
function, which results in overuse of libraries and permis-
sions. This is a chronic problem in mobile development [12].
Developers may not know when they are using insecure
libraries because the extent of inclusion of vulnerabilities via
reference is itself an open research question. One possible step
forward is regular reports on code use and library inclusion,
analogous to transportation or other infrastructure reporting.
Even annotations, which make it clear which libraries are
actually being used and which are included for convenience,
would be an improvement over common practices.

Code verification and validation. Consistent, reliable code
verification and validation lets developers write secure code.
Code verification means checking that code meets the program
specification. This is usually done using code reviews, static
analysis checkers, and occasionally, at compile time. Code
validation means checking that code meets the needs and
expectations of its users. It is generally performed using
dynamic testing, but static analysis can at times also validate
code. Both are needed; neither is a substitute for the other.

Annotations facilitate automatic review and confirmation,
and they also improve code documentation. However, they are
not widely used: indeed, code documentation and annotations
are unsolved challenges. It is very difficult to validate code
that is written without assessment as a goal, and it is rare to
find annotated code. Smart home platform vendors are in a
position to encourage developers to write secure and annotated
code. They could also seek a minimal level of annotation and
documentation in their apps and use that annotation for app
approval or recommendation. Verifiability and verification of
code is an open research challenge.

One possible approach to code assessment is creating
mechanisms for annotation so that different stakeholders need
not repeat verification. Annotations should also help other
developers compare, share, and leverage previously written
code. Best practices and community standards are components
of the annotation challenge. Badges could exist for code and
libraries as well as developers.

Code integration vulnerabilities. In the previously mentioned
doorlock example, we noted how secure devices can be used
in combination in a way that creates vulnerabilities. Similarly,
individually verified code can be combined in a manner that
creates emergent failures. For example, an early IoT light
switch was coded using a library where the incorrect use of
dependencies resulted in overheating and potential risk of fire.
This occurred because expectations of library interactions were
incorrect. Defining developer expectations of code in a highly
variable context is an open question, and the IoT devices’
physicality makes this more difficult.

Role of platforms in promoting secure coding practices.
Platforms can play a larger role in developer support, feed-

back, or management. A platform’s ability to offer baseline
security (e.g., AWS, Azure, iOS) can help raise the bar and
encourage developers to adopt certain secure coding practices.
Coordination of a few platforms may be a more effective way
forward than traditional regulation or best practices; proactive
coordination could improve overall security and prevent harm.
Further, increased cooperation between academia and industry
could also address code flaws.

Shared knowledge of failures. Currently, there is no culture of
sharing cybersecurity failures and near misses. In the emerging
IoT space, new companies are likely to repeat near misses and
mistakes of existing companies in IoT or in other domains.
Cross-industry coordination is a role for academia and public-
sector leadership; however, finding the right scale and right
people is difficult. One step forward would be to curate
case studies of security failures and near misses [13]. The
goal in disclosing such problems would be to build a body
of measurement-based, observed empirical cases in order to
avoid future failures. Much can be learned from traditional
curating, library practices, and reporting requirements in
physical domains. Another dimension where IoT can learn
from the large body of work in cyber-physical systems is in
modeling the physical effects of devices, which could facilitate
better testing environment for IoT systems.

Usability of developer tools. Discussions of usability are often
limited to end users, but developers are users, too. Usability
cannot be considered separately from the quality of code,
just as cryptography cannot be considered separately from
usability if either is to be correct. Usability from a code and
engineering perspective requires comprehensible annotation to
help developers identify security and privacy properties that
matter in their own context. A coordinated effort is needed to
make it easier to develop systems without the current common,
even chronic flaws. Ubiquitous education of developers is
a widely supported proposal. However, coding is a global
industry spanning industrial development teams working on
cryptographic libraries to kids learning to code on tablets.
Every developer will not have security expertise, and be no
such expectation should be made. To correctly use and integrate
a cryptographic or security library in their code, developers
should not need to understand cryptography, just like car
drivers need not understand how cars work under the hood.
Developers learn by example, and better examples are needed.
Many developers seek answers to security questions from
online guidance, much of which is flawed and insecure [14].
Developer-centered design is a subset of the larger domain of
user-centered design and can be informed by broader usability
literature [7], [15].

VI. Summary

Reaching a secure state of Internet of Things requires
proactively addressing several challenges. This paper offers
a path forward, and there is reason for optimism given the
foundations that exist for each challenge. We highlighted
four core IoT research challenges. First, agile cryptography is



critical for IoT devices and can be encouraged by developing
a taxonomy of devices and their minimum cryptography
needs. Manufacturers and developers could use this taxonomy
to choose appropriate cryptographic algorithms. Second, the
usability of IoT devices is critical; lacking a usable workflow,
end users will not be able to use IoT devices to their full
potential. Third, devices will fail or get compromised, so
reliable and transparent recovery or mitigation mechanisms are
necessary. Finally, developers need usable and appropriate tools
to create secure and readable code. Ideally, libraries and tools
could even make it difficult for them to create insecure code.
None of these challenges is insurmountable, but each requires
collaboration and coordination across the IoT ecosystem.
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